A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways.

نویسندگان

  • Alon Lazarus
  • Pierre Marie Del-Moral
  • Ohad Ilovich
  • Eyal Mishani
  • David Warburton
  • Eli Keshet
چکیده

Blood vessels have been shown to play perfusion-independent roles in organogenesis. Here, we examined whether blood vessels determine branching stereotypy of the mouse lung airways in which coordinated branching of epithelial and vascular tubes culminates in their co-alignment. Using different ablative strategies to eliminate the lung vasculature, both in vivo and in lung explants, we show that proximity to the vasculature is indeed essential for patterning airway branching. Remarkably, although epithelial branching per se proceeded at a nearly normal rate, branching stereotypy was dramatically perturbed following vascular ablation. Specifically, branching events requiring a rotation to change the branching plane were selectively affected. This was evidenced by either the complete absence or the shallow angle of their projections, with both events contributing to an overall flat lung morphology. Vascular ablation also led to a high frequency of ectopic branching. Regain of vascularization fully rescued arrested airway branching and restored normal lung size and its three-dimensional architecture. This role of the vasculature is independent of perfusion, flow or blood-borne substances. Inhibition of normal branching resulting from vascular loss could be explained in part by perturbing the unique spatial expression pattern of the key branching mediator FGF10 and by misregulated expression of the branching regulators Shh and sprouty2. Together, these findings uncovered a novel role of the vasculature in organogenesis, namely, determining stereotypy of epithelial branching morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of serial and parallel microperfusion to spatial variability in pulmonary inter- and intra-acinar blood flow.

This study presents a theoretical model of combined series and parallel perfusion in the human pulmonary acinus that maintains computational simplicity while capturing some important features of acinar structure. The model provides a transition between existing models of perfusion in the large pulmonary blood vessels and the pulmonary microcirculation. Arterioles and venules are represented as ...

متن کامل

Emerging pulmonary vasculature lacks fate specification.

Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E...

متن کامل

Distribution of blood flow and ventilation in the lung: gravity is not the only factor.

Current textbooks in anaesthesia describe how gravity affects the regional distribution of ventilation and blood flow in the lung, in terms of vertical gradients of pleural pressure and pulmonary vascular pressures. This concept fails to explain some of the clinical features of disturbed lung function. Evidence now suggests that gravity has a less important role in the variation of regional dis...

متن کامل

Distribution of blood flow and ventilation in the lung: gravity is not the only factor

Current textbooks in anaesthesia describe how gravity affects the regional distribution of ventilation and blood flow in the lung, in terms of vertical gradients of pleural pressure and pulmonary vascular pressures. This concept fails to explain some of the clinical features of disturbed lung function. Evidence now suggests that gravity has a less important role in the variation of regional dis...

متن کامل

REVIEWARTICLES Distribution of blood flow and ventilation in the lung: gravity is not the only factor

Current textbooks in anaesthesia describe how gravity affects the regional distribution of ventilation and blood flow in the lung, in terms of vertical gradients of pleural pressure and pulmonary vascular pressures. This concept fails to explain some of the clinical features of disturbed lung function. Evidence now suggests that gravity has a less important role in the variation of regional dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 11  شماره 

صفحات  -

تاریخ انتشار 2011